Hand Gesture Recognition with Batch and Reinforcement Learning

نویسندگان

  • Arpit Goyal
  • Andrew Ciambrone
چکیده

In this paper, we present a system for real-time recognition of user-defined static hand gestures captured via a traditional web camera. We use SURF descriptors to get the bag-of-visual-words features of the user’s hand, and use these features to train a multi-class supervised learning model. We choose the best learning model from (SVM, Neural Networks, Decision Trees, and Random Forests) and the best model parameters using hyper-parameter optimization algorithm. During test time, we use these bag-of-visual words features to predict the users hand gestures. The user has the ability to give positive or negative feedback for every prediction to the system, and the system updates itself during test time for better accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Online PCA with Adaptive Subspace Method for Real-Time Hand Gesture Learning and Recognition

The learning method for hand gesture recognition that compute a space of eigenvectors by Principal Component Analysis(PCA) traditionally require a batch computation step, in which the only way to update the subspace is to rebuild the subspace by the scratch when it comes to new samples. In this paper, we introduce a new approach to gesture recognition based on online PCA algorithm with adaptive...

متن کامل

Hand Gesture Recognition Based on Online PCA with Adaptive Subspace

The learning method for hand gesture recognition that compute a space of eigenvectors by Principal Component Analysis(PCA) traditionally require a batch computation step, in which the only way to update the subspace is to rebuild the subspace by the scratch when it comes to new samples. In this paper, we introduce a new approach to gesture recognition based on online PCA algorithm with adaptive...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015