Hand Gesture Recognition with Batch and Reinforcement Learning
نویسندگان
چکیده
In this paper, we present a system for real-time recognition of user-defined static hand gestures captured via a traditional web camera. We use SURF descriptors to get the bag-of-visual-words features of the user’s hand, and use these features to train a multi-class supervised learning model. We choose the best learning model from (SVM, Neural Networks, Decision Trees, and Random Forests) and the best model parameters using hyper-parameter optimization algorithm. During test time, we use these bag-of-visual words features to predict the users hand gestures. The user has the ability to give positive or negative feedback for every prediction to the system, and the system updates itself during test time for better accuracy.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملOnline PCA with Adaptive Subspace Method for Real-Time Hand Gesture Learning and Recognition
The learning method for hand gesture recognition that compute a space of eigenvectors by Principal Component Analysis(PCA) traditionally require a batch computation step, in which the only way to update the subspace is to rebuild the subspace by the scratch when it comes to new samples. In this paper, we introduce a new approach to gesture recognition based on online PCA algorithm with adaptive...
متن کاملHand Gesture Recognition Based on Online PCA with Adaptive Subspace
The learning method for hand gesture recognition that compute a space of eigenvectors by Principal Component Analysis(PCA) traditionally require a batch computation step, in which the only way to update the subspace is to rebuild the subspace by the scratch when it comes to new samples. In this paper, we introduce a new approach to gesture recognition based on online PCA algorithm with adaptive...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کامل